skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baez_Flores, G G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spin-orbit torques in ferromagnet/nonmagnet/ferromagnet trilayers are studied using a combination of symmetry analysis, circuit theory, semiclassical simulations, and first-principles calculations using the nonequilibrium Green's function method with supercell disorder averaging. We focus on unconventional processes involving the interplay between the two ferromagnetic layers, which are classified into direct and indirect mechanisms. The direct mechanism involves spin current generation by one ferromagnetic layer and its subsequent absorption by the other. In the indirect mechanism, the in-plane spin-polarized current from one ferromagnetic layer β€œleaks” into the other layer, where it is converted into an out-of-plane spin current and reabsorbed by the original layer. The direct mechanism results in a predominantly dampinglike torque, which damps the magnetization towards a certain direction 𝐬_𝑑. The indirect mechanism results in a predominantly fieldlike torque with respect to a generally different direction 𝐬_𝑓. Similarly to the current-in-plane giant magnetoresistance, the indirect mechanism is only active if the thickness of the nonmagnetic spacer is smaller than or comparable to the mean free path. Numerical calculations for a semiclassical model based on the Boltzmann equation confirm the presence of both direct and indirect mechanisms of spin current generation. First-principles calculations reveal sizable unconventional spin-orbit torques in Co/Cu/Co, Py/Cu/Py, and Co/Pt/Co trilayers and provide strong evidence of indirect spin current generation. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025